Pascal Eigenspaces and Invariant Sequences of the First or Second Kind
Abstract
An infinite real sequence $\{a_n\}$ is called an invariant sequence of the first (resp., second) kind if $a_n=\sum_{k=0}^n {n \choose k} (-1)^k a_k$ (resp., $a_n=\sum_{k=n}^{\infty} {k \choose n} (-1)^k a_k$). We review and investigate invariant sequences of the first and second kinds, and study their relationships using similarities of Pascal-type matrices and their eigenspaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2017
- DOI:
- 10.48550/arXiv.1706.01573
- arXiv:
- arXiv:1706.01573
- Bibcode:
- 2017arXiv170601573K
- Keywords:
-
- Mathematics - Combinatorics;
- 15B18;
- 11B39;
- 11B65