Parametrized symmetric groups and the second homology of a group
Abstract
We introduce the notion of a symmetric group parametrized by elements of a group. We show that this group is an extension of a certain subgroup of the wreath product $G \wr S_n$ by $\mathrm{H}_2(G, \mathbb{Z})$. We also discuss the motivation behind this construction.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- 10.48550/arXiv.1705.10912
- arXiv:
- arXiv:1705.10912
- Bibcode:
- 2017arXiv170510912S
- Keywords:
-
- Mathematics - Group Theory;
- 20F05 20B30 20E06 20J06 20F55 55Q05
- E-Print:
- St. Petersburg Math. J. 32 (2021), 1067-1080