A Controlled Study of Cold Dust Content in Galaxies from z = 0-2
Abstract
At z=1{--}3, the formation of new stars is dominated by dusty galaxies whose far-IR emission indicates they contain colder dust than local galaxies of a similar luminosity. We explore the reasons for the evolving IR emission of similar galaxies over cosmic time using (1) local galaxies from GOALS ({L}{IR}={10}11{--}{10}12 {L}⊙ ), (2) galaxies at z∼ 0.1{--}0.5 from 5MUSES ({L}{IR}={10}10{--}{10}12 {L}⊙ ), and (3) IR luminous galaxies spanning z=0.5{--}3 from GOODS and Spitzer xFLS ({L}{IR}> {10}11 {L}⊙ ). All samples have Spitzer mid-IR spectra, and Herschel and ground-based submillimeter imaging covering the full IR spectral energy distribution, allowing us to robustly measure {L}{IR}{SF}, {T}{dust}, and {M}{dust} for every galaxy. Despite similar infrared luminosities, z> 0.5 dusty star-forming galaxies (DSFG) have a factor of 5 higher dust masses and 5 K colder temperatures. The increase in dust mass is linked to an increase in the gas fractions with redshift, and we do not observe a similar increase in stellar mass or star formation efficiency. {L}160{SF}/{L}70{SF}, a proxy for {T}{dust}, is strongly correlated with {L}{IR}{SF}/{M}{dust} independently of redshift. We measure merger classification and galaxy size for a subsample, and there is no obvious correlation between these parameters and {L}{IR}{SF}/{M}{dust} or {L}160{SF}/{L}70{SF}. In DSFG, the change in {L}{IR}{SF}/{M}{dust} can fully account for the observed colder dust temperatures, suggesting that any change in the spatial extent of the interstellar medium is a second-order effect.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- July 2017
- DOI:
- arXiv:
- arXiv:1705.10846
- Bibcode:
- 2017ApJ...843...71K
- Keywords:
-
- galaxies: fundamental parameters;
- galaxies: high-redshift;
- galaxies: ISM;
- galaxies: star formation;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication in ApJ. 21 pages, 11 figures