Regularity of powers of cover ideals of unimodular hypergraphs
Abstract
Let $\H$ be a unimodular hypergraph over the vertex set $[n]$ and let $J(\H)$ be the cover ideal of $\H$ in the polynomial ring $R=K[x_1,\ldots,x_n]$. We show that $\reg J(\H)^s$ is a linear function in $s$ for all $s\geqslant r\left\lceil \frac{n}{2}\right\rceil+1$ where $r$ is the rank of $\H$. Moreover for every $i$, $a_i(R/J(\H)^s)$ is also a linear function in $s$ for $s \geqslant n^2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- arXiv:
- arXiv:1705.06426
- Bibcode:
- 2017arXiv170506426T
- Keywords:
-
- Mathematics - Commutative Algebra;
- Mathematics - Combinatorics