A New Condition for the Concavity Method of Blow-up Solutions to Semilinear Heat Equations
Abstract
In this paper, we consider the semilinear heat equations under Dirichlet boundary condition \[ u_{t}\left(x,t\right)=\Delta u\left(x,t\right)+f(u(x,t)), & \left(x,t\right)\in \Omega\times\left(0,+\infty\right), u\left(x,t\right)=0, & \left(x,t\right)\in\partial \Omega\times\left[0,+\infty\right), u\left(x,0\right)=u_{0}\geq0, & x\in\overline{\Omega}, \] where $\Omega$ is a bounded domain of $\mathbb{R}^{N}$ $(N\geq1)$ with smooth boundary $\partial\Omega$. The main contribution of our work is to introduce a new condition \[ (C) \alpha \int_{0}^{u}f(s)ds \leq uf(u)+\beta u^{2}+\gamma,\,\,u>0 \] for some $\alpha, \beta, \gamma>0$ with $0<\beta\leq\frac{\left(\alpha-2\right)\lambda_{0}}{2}$, where $\lambda_{0}$ is the first eigenvalue of Laplacian $\Delta$, and we use the concavity method to obtain the blow-up solutions to the semilinear heat equations. In fact, it will be seen that the condition (C) improves the conditions known so far.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- arXiv:
- arXiv:1705.05629
- Bibcode:
- 2017arXiv170505629C
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 39A14;
- 35K57
- E-Print:
- 7 pages