The large twist theorem and boundedness of solutions for polynomial potentials with $C^1$ time dependent coefficients
Abstract
In this paper we first prove the so-called large twist theorem, then using it to prove the boundedness of all solutions and the existence of quasi-periodic solutions for Duffing's equation $$ \ddot{x}+x^{2n+1}+\dsum_{i=0}^{2n}p_i(t)x^i=0, $$ where $p_i(t)\in C^1(\mathbb{S}) (n+1\leq i\leq 2n)$ and $p_i(t)\in C^0(\mathbb{S}) (0\leq i\leq n)$ with $\mathbb{S}=\mathbb{R}/\mathbb{Z}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- 10.48550/arXiv.1705.02725
- arXiv:
- arXiv:1705.02725
- Bibcode:
- 2017arXiv170502725L
- Keywords:
-
- Mathematics - Classical Analysis and ODEs