Exact VC-dimension for $L_1$-visibility of points in simple polygons
Abstract
The VC-dimension plays an important role for the algorithmic problem of guarding art galleries efficiently. We prove that inside a simple polygon at most $5$ points can be shattered by $L_1$-visibility polygons and give an example where 5 points are shattered. The VC-dimension is exactly $5$. The proof idea for the upper bound is different from previous approaches. Keywords: Art gallery, VC-dimension, $L_1$-visibility, polygons
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2017
- DOI:
- 10.48550/arXiv.1705.01723
- arXiv:
- arXiv:1705.01723
- Bibcode:
- 2017arXiv170501723L
- Keywords:
-
- Computer Science - Computational Geometry