On the non-vanishing of certain Dirichlet series
Abstract
Given $k\in\mathbb N$, we study the vanishing of the Dirichlet series $$D_k(s,f):=\sum_{n\geq1} d_k(n)f(n)n^{-s}$$ at the point $s=1$, where $f$ is a periodic function modulo a prime $p$. We show that if $(k,p-1)=1$ or $(k,p-1)=2$ and $p\equiv 3\mod 4$, then there are no odd rational-valued functions $f\not\equiv 0$ such that $D_k(1,f)=0$, whereas in all other cases there are examples of odd functions $f$ such that $D_k(1,f)=0$. As a consequence, we obtain, for example, that the set of values $L(1,\chi)^2$, where $\chi$ ranges over odd characters mod $p$, are linearly independent over $\mathbb Q$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2017
- DOI:
- arXiv:
- arXiv:1704.08358
- Bibcode:
- 2017arXiv170408358B
- Keywords:
-
- Mathematics - Number Theory;
- 11M41;
- 11L03;
- 11M20 (primary);
- 11R18 (secondary)
- E-Print:
- 16 pages