On doubly nonlocal $p$-fractional coupled elliptic system
Abstract
\noi We study the following nonlinear system with perturbations involving p-fractional Laplacian \begin{equation*} (P)\left\{ \begin{split} (-\De)^s_p u+ a_1(x)u|u|^{p-2} &= \alpha(|x|^{-\mu}*|u|^q)|u|^{q-2}u+ \beta (|x|^{-\mu}*|v|^q)|u|^{q-2}u+ f_1(x)\; \text{in}\; \mb R^n,\\ (-\De)^s_p v+ a_2(x)v|v|^{p-2} &= \gamma(|x|^{-\mu}*|v|^q)|v|^{q-2}v+ \beta (|x|^{-\mu}*|u|^q)|v|^{q-2}v+ f_2(x)\; \text{in}\; \mb R^n, \end{split} \right. \end{equation*} where $n>sp$, $0<s<1$, $p\geq2$, $\mu \in (0,n)$, $\frac{p}{2}\left( 2-\frac{\mu}{n}\right) < q <\frac{p^*_s}{2}\left( 2-\frac{\mu}{n}\right)$, $\alpha,\beta,\gamma >0$, $0< a_i \in C^1(\mb R^n, \mb R)$, $i=1,2$ and $f_1,f_2: \mb R^n \to \mb R$ are perturbations. We show existence of atleast two nontrivial solutions for $(P)$ using Nehari manifold and minimax methods.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2017
- DOI:
- arXiv:
- arXiv:1704.06908
- Bibcode:
- 2017arXiv170406908M
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35R11;
- 35R09;
- 35A15
- E-Print:
- 26 pages