Augmentation Quotients for Burnside Rings of some Finite $p$-Groups
Abstract
Let $G$ be a finite group, $\Omega(G)$ be its Burnside ring, and $\Delta(G)$ its augmentation ideal. Denote by $\Delta^n(G)$ and $Q_n(G)$ the $n$-th power of $\Delta(G)$ and the $n$-th consecutive quotient group $\Delta^n(G)/\Delta^{n+1}(G)$, respectively. This paper provides an explicit $\mathbb{Z}$-basis for $\Delta^n(\mathcal{H})$ and determine the isomorphism class of $Q_n(\mathcal{H})$ for each positive integer $n$, where $\mathcal{H}=\langle g,h |\, g^{p^m}=h^p=1, h^{-1}gh=g^{p^{m-1}+1}\rangle$, $p$ is an odd prime.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2017
- DOI:
- arXiv:
- arXiv:1704.06538
- Bibcode:
- 2017arXiv170406538C
- Keywords:
-
- Mathematics - Rings and Algebras;
- 16S34;
- 20C05