When is $R \ltimes I$ an almost Gorenstein local ring?
Abstract
Let $(R, \mathfrak{m}) $ be a Gorenstein local ring of dimension $d > 0$ and let $I$ be an ideal of $R$ such that $(0) \ne I \subsetneq R$ and $R/I$ is a Cohen-Macaulay ring of dimension $d$. There is given a complete answer to the question of when the idealization $A = R \ltimes I$ of $I$ over $R$ is an almost Gorenstein local ring.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2017
- DOI:
- arXiv:
- arXiv:1704.05961
- Bibcode:
- 2017arXiv170405961G
- Keywords:
-
- Mathematics - Commutative Algebra;
- 13H10
- E-Print:
- 7 pages