Stability and Instability of the Sub-extremal Reissner-Nordström Black Hole Interior for the Einstein-Maxwell-Klein-Gordon Equations in Spherical Symmetry
Abstract
We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry.Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged-L2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged-L2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry.
- Publication:
-
Communications in Mathematical Physics
- Pub Date:
- May 2018
- DOI:
- arXiv:
- arXiv:1704.05790
- Bibcode:
- 2018CMaPh.360..103V
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Mathematical Physics;
- Mathematics - Analysis of PDEs
- E-Print:
- 46 pages, 4 figures Correction of a few typos. Version accepted for publication in Communications in Mathematical Physics