The spherical p-harmonic eigenvalue problem in non-smooth domains
Abstract
We prove the existence of p-harmonic functions under the form u(r, $\sigma$) = r --$\beta$ $\omega$($\sigma$) in any cone C S generated by a spherical domain S and vanishing on $\partial$C S. We prove the uniqueness of the exponent $\beta$ and of the normalized function $\omega$ under a Lipschitz condition on S.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2017
- DOI:
- 10.48550/arXiv.1704.01037
- arXiv:
- arXiv:1704.01037
- Bibcode:
- 2017arXiv170401037G
- Keywords:
-
- Mathematics - Analysis of PDEs