On the representation of integers by binary quadratic forms
Abstract
In this note we show that for a given irreducible binary quadratic form $f(x,y)$ with integer coefficients, whenever we have $f(x,y) = f(u,v)$ for integers $x,y,u,v$, there exists a rational automorphism of $f$ which sends $(x,y)$ to $(u,v)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2017
- DOI:
- 10.48550/arXiv.1704.00221
- arXiv:
- arXiv:1704.00221
- Bibcode:
- 2017arXiv170400221X
- Keywords:
-
- Mathematics - Number Theory