Annihilating wild kernels
Abstract
Let $L/K$ be a finite Galois extension of number fields with Galois group $G$. Let $p$ be an odd prime and $r>1$ be an integer. Assuming a conjecture of Schneider, we formulate a conjecture that relates special values of equivariant Artin $L$-series at $s=r$ to the compact support cohomology of the étale $p$-adic sheaf $\mathbb Z_p(r)$. We show that our conjecture is essentially equivalent to the $p$-part of the equivariant Tamagawa number conjecture for the pair $(h^0(\mathrm{Spec}(L))(r), \mathbb Z[G])$. We derive from this explicit constraints on the Galois module structure of Banaszak's $p$-adic wild kernels.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2017
- DOI:
- 10.48550/arXiv.1703.09088
- arXiv:
- arXiv:1703.09088
- Bibcode:
- 2017arXiv170309088N
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - K-Theory and Homology;
- 11R42;
- 19F27;
- 11R70
- E-Print:
- 31 pages