Decay Estimates and Strichartz Estimates of Fourth-order Schrödinger Operator
Abstract
We study time decay estimates of the fourth-order Schrödinger operator $H=(-\Delta)^{2}+V(x)$ in $\mathbb{R}^{d}$ for $d=3$ and $d\geq5$. We analyze the low energy and high energy behaviour of resolvent $R(H; z)$, and then derive the Jensen-Kato dispersion decay estimate and local decay estimate for $e^{-itH}P_{ac}$ under suitable spectrum assumptions of $H$. Based on Jensen-Kato decay estimate and local decay estimate, we obtain the $L^1\rightarrow L^{\infty}$ estimate of $e^{-itH}P_{ac}$ in $3$-dimension by Ginibre argument, and also establish the endpoint global Strichartz estimates of $e^{-itH}P_{ac}$ for $d\geq5$. Furthermore, using the local decay estimate and the Georgescu-Larenas-Soffer conjugate operator method, we prove the Jensen-Kato type decay estimates for some functions of $H$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2017
- DOI:
- arXiv:
- arXiv:1703.00295
- Bibcode:
- 2017arXiv170300295F
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 43 Pages, published version. To appear in J. Functional Analysis