Magnetohydrodynamic shocks in a dissipative quantum plasma with exchange-correlation effects
Abstract
We investigate the nonlinear propagation of multidimensional magnetosonic shock waves (MSWs) in a dissipative quantum magnetoplasma. A macroscopic quantum magnetohydrodynamic (QMHD) model is used to include the quantum force associated with the Bohm potential, the pressure-like spin force, the exchange and correlation force of electrons, as well as the dissipative force due to the kinematic viscosity of ions and the magnetic diffusivity. The effects of these forces on the properties of arbitrary amplitude MSWs are examined numerically. It is found that the contribution from the exchange-correlation force appears to be dominant over those from the pressure gradient and the other similar quantum forces, and it results in a transition from monotonic to oscillatory shocks in the presence of either the ion kinematic viscosity or the magnetic diffusivity.
- Publication:
-
European Physical Journal Plus
- Pub Date:
- July 2017
- DOI:
- arXiv:
- arXiv:1702.04961
- Bibcode:
- 2017EPJP..132..316S
- Keywords:
-
- Physics - Plasma Physics
- E-Print:
- 6 pages, 3 figures