Compton spectra of atoms at high x-ray intensity
Abstract
Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible.
, which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.- Publication:
-
Journal of Physics B Atomic Molecular Physics
- Pub Date:
- March 2017
- DOI:
- 10.1088/1361-6455/aa59cb
- arXiv:
- arXiv:1702.04639
- Bibcode:
- 2017JPhB...50f4003S
- Keywords:
-
- Physics - Atomic Physics
- E-Print:
- 24 pages, 10 figures. This is an author-created, un-copyedited version of an article accepted for publication in the special issue of "Emerging Leaders" in J. Phys. B: At. Mol. Opt. Phys. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it