Pinned Distances in Modules over Finite Valuation Rings
Abstract
Let $R$ be a finite valuation ring of order $q^r$ where $q$ is odd and $A$ be a subset of $R$. In the present paper, we prove that there exists a point $u$ in the Cartesian product set $A\times A\subset R^2$ such that the size of the pinned distance set at $u$ satisfies $$|\Delta_u(A\times A)|\gg \min\left\{q^r, \frac{|A|^3}{q^{2r-1}}\right\}.$$ This implies that if $|A|\ge q^{r-\frac{1}{3}}$, then the set $A\times A$ determines a positive proportion of all possible distances.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2017
- DOI:
- 10.48550/arXiv.1702.04147
- arXiv:
- arXiv:1702.04147
- Bibcode:
- 2017arXiv170204147A
- Keywords:
-
- Mathematics - Combinatorics