Void Profile from Planck Lensing Potential Map
Abstract
We use the lensing potential map from Planck CMB lensing reconstruction analysis and the “Public Cosmic Void Catalog” to measure the stacked void lensing potential. We have made an attempt to fit the HSW void profile parameters from the stacked lensing potential. In this profile, four parameters are needed to describe the shape of voids with different characteristic radii R V . However, we have found that after reducing the background noise by subtracting the average background, there is a residue lensing power left in the data. The inclusion of the environment shifting parameter, {γ }V, is necessary to get a better fit to the data with the residue lensing power. We divide the voids into two redshift bins: cmass1 (0.45< z< 0.5) and cmass2 (0.5< z< 0.6). Our best-fit parameters are α =1.989+/- 0.149, β =12.61+/- 0.56, {δ }c=-0.697+/- 0.025, {R}S/{R}V=1.039+/- 0.030, {γ }v=(-7.034+/- 0.150)× {10}-2 for the cmass1 sample with 123 voids and α =1.956+/- 0.165, β =12.91+/- 0.60, {δ }c=-0.673+/- 0.027, {R}S/{R}V=1.115+/- 0.032, {γ }v=(-4.512+/- 0.114)× {10}-2 for the cmass2 sample with 393 voids at 68% C.L. The addition of the environment shifting parameter is consistent with the conjecture that the Sloan Digital Sky Survey voids reside in an underdense region.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- February 2017
- DOI:
- arXiv:
- arXiv:1702.01009
- Bibcode:
- 2017ApJ...836..156C
- Keywords:
-
- dark matter;
- gravitational lensing: weak;
- large-scale structure of universe;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 8 pages, 5 figures, 1 table, accepted for publication in ApJ