Nonexistence of perfect $2$-error-correcting Lee codes in certain dimensions
Abstract
The Golomb--Welch conjecture states that there are no perfect $e$-error-correcting codes in $\mathbb{Z}^n$ for $n \ge 3$ and $e \ge 2$. In this note, we prove the nonexistence of perfect $2$-error-correcting codes for a certain class of $n$, which is expected to be infinite. This result further substantiates the Golomb--Welch conjecture.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2017
- DOI:
- 10.48550/arXiv.1701.08412
- arXiv:
- arXiv:1701.08412
- Bibcode:
- 2017arXiv170108412K
- Keywords:
-
- Mathematics - Combinatorics;
- 97B60;
- 52C22
- E-Print:
- 5 pages, 1 table