Sum-Product Type Estimates for Subsets of Finite Valuation Rings
Abstract
Let $R$ be a finite valuation ring of order $q^r.$ Using a point-plane incidence estimate in $R^3$, we obtain sum-product type estimates for subsets of $R$. In particular, we prove that for $A\subset R$, $$|AA+A|\gg \min\left\{q^{r}, \frac{|A|^3}{q^{2r-1}}\right\}.$$ We also show that if $|A+A||A|^{2}>q^{3r-1}$, then $$|A^2+A^2||A+A|\gg q^{\frac{r}{2}}|A|^{\frac{3}{2}}.$$
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2017
- DOI:
- 10.48550/arXiv.1701.08101
- arXiv:
- arXiv:1701.08101
- Bibcode:
- 2017arXiv170108101A
- Keywords:
-
- Mathematics - Combinatorics