Embedded Spiral Patterns in the Cool Core of the Massive Cluster of Galaxies Abell 1835
Abstract
We present the properties of an intracluster medium (ICM) in the cool core of the massive cluster of galaxies, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns with a radius of 70 kpc (or 18″) as a whole in the residual image of the X-ray surface brightness after the two-dimensional ellipse model of surface brightness is subtracted. The size is smaller by a factor of 2-4 than that of other clusters that are known to have a similar pattern. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their X-ray spectra show that the ICM temperatures in the positive- and negative-excess regions are {5.09}-0.13+0.12 keV and {6.52}-0.15+0.18 keV, respectively. In contrast, no significant difference is found in the abundance or pressure, the latter of which suggests that the ICM in the two regions of the spiral patterns is near or is in pressure equilibrium. The spatially resolved X-ray spectroscopy of the central region (r< 40\prime\prime ), divided into 92 sub-regions indicates that Abell 1835 is a typical cool core cluster. We also find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. The residual image reveals some lumpy substructures in the cool core. The line of sight component of the disturbance velocity that is responsible for the substructures is estimated to be lower than 600 km s-1. Abell 1835 may now be experiencing an off-axis minor merger.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- March 2017
- DOI:
- arXiv:
- arXiv:1701.06747
- Bibcode:
- 2017ApJ...837...34U
- Keywords:
-
- galaxies: clusters: general;
- galaxies: clusters: individual: Abell 1835;
- galaxies: clusters: intracluster medium;
- X-rays: galaxies: clusters;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 9 pages, 9 figures, accepted for publication in The Astrophysical Journal