The diameter of the generating graph of a finite soluble group
Abstract
Let $G$ be a finite 2-generated soluble group and suppose that $\langle a_1,b_1\rangle=\langle a_2,b_2\rangle=G$. If either $G^\prime$ is of odd order or $G^\prime$ is nilpotent, then there exists $b \in G$ with $\langle a_1,b\rangle=\langle a_2,b\rangle=G.$ We construct a soluble 2-generated group $G$ of order $2^{10}\cdot 3^2$ for which the previous result does not hold. However a weaker result is true for every finite soluble group: if $\langle a_1,b_1\rangle=\langle a_2,b_2\rangle=G$, then there exist $c_1, c_2$ such that $\langle a_1, c_1\rangle = \langle c_1, c_2\rangle =\langle c_2, a_2\rangle=G.$
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2017
- DOI:
- arXiv:
- arXiv:1701.03346
- Bibcode:
- 2017arXiv170103346L
- Keywords:
-
- Mathematics - Group Theory;
- 20D10