A universal minimal mass scale for present-day central black holes
Abstract
The early stages of massive black hole growth are poorly understood1. High-luminosity active galactic nuclei at very high redshift2 z further imply rapid growth soon after the Big Bang. Suggested formation mechanisms typically rely on the extreme conditions found in the early Universe (very low metallicity, very high gas or star density). It is therefore plausible that these black hole seeds were formed in dense environments, at least a Hubble time ago (z > 1.8 for a look-back time of tH = 10 Gyr)3. Intermediate-mass black holes (IMBHs) of mass M• ≈ 102-105 solar masses, M⊙, are the long-sought missing link4 between stellar black holes, born of supernovae5, and massive black holes6, tied to galaxy evolution by empirical scaling relations7,8. The relation between black hole mass, M•, and stellar velocity dispersion, σ★, that is observed in the local Universe over more than about three decades in massive black hole mass, correlates M• and σ★ on scales that are well outside the massive black hole's radius of dynamical influence6, rh≈GM•/σ★2. We show that low-mass black hole seeds that accrete stars from locally dense environments in galaxies following a universal M•/σ★ relation9,10 grow over the age of the Universe to be above M0≈3×105M⊙ (5% lower limit), independent of the unknown seed masses and formation processes. The mass M0 depends weakly on the uncertain formation redshift, and sets a universal minimal mass scale for present-day black holes. This can explain why no IMBHs have yet been found6, and it implies that present-day galaxies with σ★ < S0 ≈ 40 km s-1 lack a central black hole, or formed it only recently. A dearth of IMBHs at low redshifts has observable implications for tidal disruptions11 and gravitational wave mergers12.
- Publication:
-
Nature Astronomy
- Pub Date:
- August 2017
- DOI:
- arXiv:
- arXiv:1701.00415
- Bibcode:
- 2017NatAs...1E.147A
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Published in Nature Astronomy (http://www.nature.com/articles/s41550-017-0147). This is the Authors' final version, which is identical in content to the published version but slightly different in the presentation