Necessary and sufficient conditions for the $r$-excessive local martingales to be martingales
Abstract
We consider the decreasing and the increasing $r$-excessive functions $\varphi_r$ and $\psi_r$ that are associated with a one-dimensional conservative regular continuous strong Markov process $X$ with values in an interval with endpoints $\alpha < \beta$. We prove that the $r$-excessive local martingale $\bigl( e^{-r (t \wedge T_\alpha)} \varphi_r (X_{t \wedge T_\alpha}) \bigr)$ $\bigl($resp., $\bigl( e^{-r (t \wedge T_\beta)} \psi_r (X_{t \wedge T_\beta}) \bigr) \bigr)$ is a strict local martingale if the boundary point $\alpha$ (resp., $\beta$) is inaccessible and entrance, and a martingale otherwise.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2016
- DOI:
- 10.48550/arXiv.1612.08387
- arXiv:
- arXiv:1612.08387
- Bibcode:
- 2016arXiv161208387U
- Keywords:
-
- Mathematics - Probability