Approximation and simulation of infinite-dimensional Levy processes
Abstract
In this paper approximation methods for infinite-dimensional Levy processes, also called (time-dependent) Levy fields, are introduced. For square integrable fields beyond the Gaussian case, it is no longer given that the one-dimensional distributions in the spectral representation with respect to the covariance operator are independent. When simulated via a Karhunen-Loeve expansion a set of dependent but uncorrelated one-dimensional Levy processes has to be generated. The dependence structure among the one-dimensional processes ensures that the resulting field exhibits the correct point-wise marginal distributions. To approximate the respective (one-dimensional) Levy-measures, a numerical method, called discrete Fourier inversion, is developed. For this method, $L^p$-convergence rates can be obtained and, under certain regularity assumptions, mean square and $L^p$-convergence of the approximated field is proved. Further, a class of (time-dependent) Levy fields is introduced, where the point-wise marginal distributions are dependent but uncorrelated subordinated Wiener processes. For this specific class one may derive point-wise marginal distributions in closed form. Numerical examples, which include hyperbolic and normal-inverse Gaussian fields, demonstrate the efficiency of the approach.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2016
- DOI:
- 10.48550/arXiv.1612.05541
- arXiv:
- arXiv:1612.05541
- Bibcode:
- 2016arXiv161205541B
- Keywords:
-
- Mathematics - Probability