Vector Approximate Message Passing for the Generalized Linear Model
Abstract
The generalized linear model (GLM), where a random vector $\boldsymbol{x}$ is observed through a noisy, possibly nonlinear, function of a linear transform output $\boldsymbol{z}=\boldsymbol{Ax}$, arises in a range of applications such as robust regression, binary classification, quantized compressed sensing, phase retrieval, photon-limited imaging, and inference from neural spike trains. When $\boldsymbol{A}$ is large and i.i.d. Gaussian, the generalized approximate message passing (GAMP) algorithm is an efficient means of MAP or marginal inference, and its performance can be rigorously characterized by a scalar state evolution. For general $\boldsymbol{A}$, though, GAMP can misbehave. Damping and sequential-updating help to robustify GAMP, but their effects are limited. Recently, a "vector AMP" (VAMP) algorithm was proposed for additive white Gaussian noise channels. VAMP extends AMP's guarantees from i.i.d. Gaussian $\boldsymbol{A}$ to the larger class of rotationally invariant $\boldsymbol{A}$. In this paper, we show how VAMP can be extended to the GLM. Numerical experiments show that the proposed GLM-VAMP is much more robust to ill-conditioning in $\boldsymbol{A}$ than damped GAMP.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2016
- DOI:
- 10.48550/arXiv.1612.01186
- arXiv:
- arXiv:1612.01186
- Bibcode:
- 2016arXiv161201186S
- Keywords:
-
- Computer Science - Information Theory