Inflection-point B -L Higgs inflation
Abstract
Inflection-point inflation is an interesting possibility to realize a successful slow-roll inflation when inflation is driven by a single scalar field with its initial value below the Planck mass (ϕI≲MPl). In order for a renormalization group (RG) improved effective λ ϕ4 potential to develop an inflection point, the quartic coupling λ (ϕ ) must exhibit a minimum with an almost vanishing value in its RG evolution, namely λ (ϕI)≃0 and βλ(ϕI)≃0 , where βλ is the beta function of the quartic coupling. As an example, we consider the minimal gauged B -L extended Standard Model at the TeV scale, where we identify the B -L Higgs field as the inflaton field. For a successful inflection-point inflation, which is consistent with the current cosmological observations, the mass ratios among the Z' gauge boson, the right-handed neutrinos and the B -L Higgs boson are fixed. Our scenario can be tested in the future collider experiments such as the high-luminosity LHC and the SHiP experiments. In addition, the inflection-point inflation provides a unique prediction for the running of the spectral index α ≃-2.7 ×10-3(60/N) 2 (N is the e -folding number), which can be tested in the near future.
- Publication:
-
Physical Review D
- Pub Date:
- February 2017
- DOI:
- 10.1103/PhysRevD.95.035035
- arXiv:
- arXiv:1610.09362
- Bibcode:
- 2017PhRvD..95c5035O
- Keywords:
-
- High Energy Physics - Phenomenology;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 16 pages, 3 figures, analysis for the end of inflation revised, typos corrected. Accepted for publication in PRD