Cosmic-ray composition measurements and cosmic ray background-free γ -ray observations with Cherenkov telescopes
Abstract
The muon component of extensive air showers (EAS) initiated by cosmic-ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic-ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic-ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic-ray background in gamma-ray observations. This technique provides a possibility for up to 2 orders of magnitude improvement of sensitivity for γ -ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an order-of-magnitude improvement of sensitivity in the multi-EeV energy band, compared to Pierre Auger Observatory.
- Publication:
-
Physical Review D
- Pub Date:
- December 2016
- DOI:
- arXiv:
- arXiv:1610.01794
- Bibcode:
- 2016PhRvD..94l3018N
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 11 pages, 12 figures