Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators
Abstract
We prove a quantitative unique continuation principle for infinite dimensional spectral subspaces of Schrödinger operators. Let $\Lambda_L = (-L/2,L/2)^d$ and $H_L = -\Delta_L + V_L$ be a Schrödinger operator on $L^2 (\Lambda_L)$ with a bounded potential $V_L : \Lambda_L \to \mathbb{R}^d$ and Dirichlet, Neumann, or periodic boundary conditions. Our main result is of the type \[ \int_{\Lambda_L} \lvert \phi \rvert^2 \leq C_{\mathrm{sfuc}} \int_{W_\delta (L)} \lvert \phi \rvert^2, \] where $\phi$ is an infinite complex linear combination of eigenfunctions of $H_L$ with exponentially decaying coefficients, $W_\delta (L)$ is some union of equidistributed $\delta$-balls in $\Lambda_L$ and $C_{\mathrm{sfuc}} > 0$ an $L$-independent constant. The exponential decay condition on $\phi$ can alternatively be formulated as an exponential decay condition of the map $\lambda \mapsto \lVert \chi_{[\lambda , \infty)} (H_L) \phi \rVert^2$. The novelty is that at the same time we allow the function $\phi$ to be from an infinite dimensional spectral subspace and keep an explicit control over the constant $C_{\mathrm{sfuc}}$ in terms of the parameters. Moreover, we show that a similar result cannot hold under a polynomial decay condition.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2016
- DOI:
- arXiv:
- arXiv:1609.07408
- Bibcode:
- 2016arXiv160907408T
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematical Physics
- E-Print:
- Commun. Pur. Appl. Anal. 16(5):1719-1730, 2017