Capitulation in the absolutely abelian extensions of some number fields II
Abstract
We study the capitulation of $2$-ideal classes of an infinite family of imaginary biquadratic number fields consisting of fields $k =Q(\sqrt{pq_1q_2}, i)$, where $i=\sqrt{-1}$ and $q_1\equiv q_2\equiv-p\equiv-1 \pmod 4$ are different primes. For each of the three quadratic extensions $K/k$ inside the absolute genus field $k^{(*)}$ of $k$, we compute the capitulation kernel of $K/k$. Then we deduce that each strongly ambiguous class of $k/Q(i)$ capitulates already in $k^{(*)}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2016
- DOI:
- 10.48550/arXiv.1609.03087
- arXiv:
- arXiv:1609.03087
- Bibcode:
- 2016arXiv160903087A
- Keywords:
-
- Mathematics - Number Theory;
- 11R11;
- 11R16;
- 11R20;
- 11R27;
- 11R29
- E-Print:
- 17 pages, To be published by Acta Mathematica Vietnamica, 2016. arXiv admin note: substantial text overlap with arXiv:1507.00295, arXiv:1503.01992