Distinct distances on regular varieties over finite fields
Abstract
In this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset $\mathcal{E}$ in a regular variety satisfies $|\mathcal{E}|\gg q^{\frac{d-1}{2}+\frac{1}{k-1}}$, then $\Delta_{k, F}(\mathcal{E})\supseteq \mathbb{F}_q\setminus \{0\}$ for some certain families of polynomials $F(\mathbf{x})\in \mathbb{F}_q[x_1, \ldots, x_d]$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2016
- DOI:
- 10.48550/arXiv.1608.06401
- arXiv:
- arXiv:1608.06401
- Bibcode:
- 2016arXiv160806401V
- Keywords:
-
- Mathematics - Number Theory