Arithmetic progressions in multiplicative groups of finite fields
Abstract
Let $G$ be a multiplicative subgroup of the prime field $\mathbb F_p$ of size $|G|> p^{1-\kappa}$ and $r$ an arbitrarily fixed positive integer. Assuming $\kappa=\kappa(r)>0$ and $p$ large enough, it is shown that any proportional subset $A\subset G$ contains non-trivial arithmetic progressions of length $r$. The main ingredient is the Szemerédi-Green-Tao theorem.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2016
- DOI:
- 10.48550/arXiv.1608.05449
- arXiv:
- arXiv:1608.05449
- Bibcode:
- 2016arXiv160805449C
- Keywords:
-
- Mathematics - Number Theory