Partial result of Yau's Conjecture of the first eigenvalue in unit sphere $\mathbb{S}^{n+1}(1)$
Abstract
In this paper, we partially solve Yau' Conjecture of the first eigenvalue of an embedded compact minimal hypersurface of unit sphere $\mathbb{S}^{n+1}(1)$, i.e., Corollary 1.2. In particular, Corollary 1.3 proves that the condition $\int_{\Omega_{1}}|\nabla u|^{2}=(n+1)\int_{\Omega_{1}}u^{2}$ is naturally true and meaningful in Corollary 1.2.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2016
- DOI:
- 10.48550/arXiv.1607.08306
- arXiv:
- arXiv:1607.08306
- Bibcode:
- 2016arXiv160708306S
- Keywords:
-
- Mathematics - Differential Geometry