Cosmological tests with the FSRQ gamma-ray luminosity function
Abstract
The extensive catalogue of gamma-ray selected flat-spectrum radio quasars (FSRQs) produced by Fermi during a four-year survey has generated considerable interest in determining their gamma-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance Λ cold dark matter (ΛCDM) and Rh = ct cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both ΛCDM and Rh = ct. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour Rh = ct over ΛCDM. We suggest that such population studies, though featuring a strong evolution in redshift, may none the less be used as a valuable independent check of other model comparisons based solely on geometric considerations.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2016
- DOI:
- arXiv:
- arXiv:1607.06296
- Bibcode:
- 2016MNRAS.462.3094Z
- Keywords:
-
- methods: statistical;
- quasars: general;
- cosmology: theory;
- large-scale structure of Universe;
- gamma-rays: general;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- accepted by MNRAS, 11 pages, 11 figures, 2 tables