New Upper Bound for Sums of Dilates
Abstract
For $\lambda \in \mathbb{Z}$, let $\lambda \cdot A = \{ \lambda a : a \in A\}$. Suppose $r, h\in \mathbb{Z}$ are sufficiently large and comparable to each other. We prove that if $|A+A| \le K |A|$ and $\lambda_1, \ldots, \lambda_h \le 2^r$, then \[ |\lambda_1 \cdot A + \ldots + \lambda_h \cdot A | \le K^{ 7 rh /\ln (r+h) } |A|. \] This improves upon a result of Bukh who shows that \[ |\lambda_1 \cdot A + \ldots + \lambda_h \cdot A | \le K^{O(rh)} |A|. \] Our main technique is to combine Bukh's idea of considering the binary expansion of $\lambda_i$ with a result on biclique decompositions of bipartite graphs.lique decompositions.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2016
- DOI:
- arXiv:
- arXiv:1607.04888
- Bibcode:
- 2016arXiv160704888B
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Number Theory;
- 11P70
- E-Print:
- The Electronic Journal of Combinatorics 24(3) (2017), #P3.37