Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver
Abstract
Matrices associated with graphs, such as the Laplacian, lead to numerous interesting graph problems expressed as linear systems. One field where Laplacian linear systems play a role is network analysis, e. g. for certain centrality measures that indicate if a node (or an edge) is important in the network. One such centrality measure is current-flow closeness. To allow network analysis workflows to profit from a fast Laplacian solver, we provide an implementation of the LAMG multigrid solver in the NetworKit package, facilitating the computation of current-flow closeness values or related quantities. Our main contribution consists of two algorithms that accelerate the current-flow computation for one node or a reasonably small node subset significantly. One sampling-based algorithm provides an unbiased estimation of the related electrical farness, the other one is based on the Johnson-Lindenstrauss transform. Our inexact algorithms lead to very accurate results in practice. Thanks to them one is now able to compute an estimation of current-flow closeness of one node on networks with tens of millions of nodes and edges within seconds or a few minutes. From a network analytical point of view, our experiments indicate that current-flow closeness can discriminate among different nodes significantly better than traditional shortest-path closeness and is also considerably more resistant to noise -- we thus show that two known drawbacks of shortest-path closeness are alleviated by the current-flow variant.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2016
- DOI:
- arXiv:
- arXiv:1607.02955
- Bibcode:
- 2016arXiv160702955B
- Keywords:
-
- Computer Science - Data Structures and Algorithms
- E-Print:
- Conference version published in Proceedings of SIAM CSC 2016