Light Higgsino Dark Matter from Non-thermal Cosmology
Abstract
We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter-domination prior to Big-Bang nucleosynthesis. Matter-domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rules out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA would be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilization mechanisms. We describe the impact of embedding dark matter higgsino in these scenarios.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2016
- DOI:
- arXiv:
- arXiv:1607.00004
- Bibcode:
- 2016arXiv160700004A
- Keywords:
-
- High Energy Physics - Phenomenology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Theory
- E-Print:
- 21 pages, 6 figures