Reconciling Planck with the local value of H0 in extended parameter space
Abstract
The recent determination of the local value of the Hubble constant by Riess et al., 2016 (hereafter R16) is now 3.3 sigma higher than the value derived from the most recent CMB anisotropy data provided by the Planck satellite in a ΛCDM model. Here we perform a combined analysis of the Planck and R16 results in an extended parameter space, varying simultaneously 12 cosmological parameters instead of the usual 6. We find that a phantom-like dark energy component, with effective equation of state w = -1.29-0.12+0.15 at 68% c.l. can solve the current tension between the Planck dataset and the R16 prior in an extended ΛCDM scenario. On the other hand, the neutrino effective number is fully compatible with standard expectations. This result is confirmed when including cosmic shear data from the CFHTLenS survey and CMB lensing constraints from Planck. However, when BAO measurements are included we find that some of the tension with R16 remains, as also is the case when we include the supernova type Ia luminosity distances from the JLA catalog.
- Publication:
-
Physics Letters B
- Pub Date:
- October 2016
- DOI:
- 10.1016/j.physletb.2016.08.043
- arXiv:
- arXiv:1606.00634
- Bibcode:
- 2016PhLB..761..242D
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- 6 pages, 1 figure