Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei
Abstract
Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion.
Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion owing to breakup is nearly independent of Z and has an average value of ∼9 % . This is below the experimentally determined fusion suppression, which is typically ∼30 % in these systems. Conclusions: Inclusion of resonance lifetimes is essential to correctly reproduce breakup observables. This results in a larger fraction of nuclei remaining intact at the fusion-barrier radius compared with calculations that do not explicitly include lifetime effects. The more realistic treatment of breakup followed in this work leads to the conclusion that the suppression of complete fusion cannot be fully explained by breakup prior to reaching the fusion barrier. Only one-third of the observed fusion suppression can be attributed to the competing process of breakup. Other mechanisms that can suppress complete fusion must therefore be investigated. One of the possible candidates is cluster transfer that produces the same heavy targetlike nuclei as those formed by incomplete fusion.- Publication:
-
Physical Review C
- Pub Date:
- June 2016
- DOI:
- arXiv:
- arXiv:1605.06237
- Bibcode:
- 2016PhRvC..93f4604C
- Keywords:
-
- Nuclear Experiment;
- Nuclear Theory
- E-Print:
- 16 pages, 10 figures. Accepted as a Regular Article in Physical Review C