Vanishing of Ext and Tor over fiber products
Abstract
Consider a non-trivial fiber product $R=S\times_kT$ of local rings $S$, $T$ with common residue field $k$. Given two finitely generate $R$-modules $M$ and $N$, we show that if $\operatorname{Tor}^R_i(M,N)=0=\operatorname{Tor}^R_{i+1}(M,N)$ for some $i\geq 5$, then $\operatorname{pd}_R(M)\leq 1$ or $\operatorname{pd}_R(N)\leq 1$. From this, we deduce several consequence, for instance, that $R$ satisfies the Auslander-Reiten Conjecture.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2016
- DOI:
- arXiv:
- arXiv:1603.05711
- Bibcode:
- 2016arXiv160305711N
- Keywords:
-
- Mathematics - Commutative Algebra;
- 13D02;
- 13D05;
- 13D07;
- 13D09
- E-Print:
- 13 pages. comments welcome. v.2 includes section about depth formula and minor other revisions. v.3 includes corrections to Lemmas 2.3-2.5