Electromagnetic counterparts to gravitational waves from black hole mergers and naked singularities
Abstract
We consider the question here whether the proposed electromagnetic counterpart of the gravitational wave signals in binary black hole coalescence may be due to the appearance of a `short lived' naked singularity during the merger. We point out that the change in topology that the spacetime undergoes during the merger can cause the appearance of a naked singularity. In case some matter, in the form of a small accretion disk, is present in the surroundings of the black hole system then the emitted luminosity during the merger would allow to distinguish the scenario where the naked singularity forms from the scenario where the horizon exists at all times. In fact the emitted luminosity spectrum would be much higher in the case where a naked singularity forms as opposed to the `pure' black hole case. We suggest that the presence of such a transient naked singularity will explain the high luminosity of an electromagnetic counterpart during the merger much more easily.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2016
- DOI:
- arXiv:
- arXiv:1603.02848
- Bibcode:
- 2016arXiv160302848M
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - High Energy Astrophysical Phenomena;
- High Energy Physics - Theory
- E-Print:
- 5 pages, 2 figures