Cosmological perturbations on the phantom brane
Abstract
We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < -1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.
- Publication:
-
Journal of Cosmology and Astroparticle Physics
- Pub Date:
- July 2016
- DOI:
- arXiv:
- arXiv:1603.01277
- Bibcode:
- 2016JCAP...07..038B
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Phenomenology;
- High Energy Physics - Theory
- E-Print:
- Matches published version