Reheating and primordial gravitational waves in generalized Galilean genesis
Abstract
Galilean genesis is an alternative to inflation, in which the universe starts expanding from Minkowski with the stable violation of the null energy condition. In this paper, we discuss how the early universe is reheated through the gravitational particle production at the transition from the genesis phase to the subsequent phase where the kinetic energy of the scalar field is dominant. We then study the consequences of gravitational reheating after Galilean genesis on the spectrum of primordial gravitational waves. The resultant spectrum is strongly blue, and at high frequencies Ωgwpropto f3 in terms of the energy density per unit logarithmic frequency. Though this cannot be detected in existing detectors, the amplitude can be as large as Ωgw~ 10-12 at f~ 100 MHz, providing a future test of the genesis scenario. The analysis is performed within the framework of generalized Galilean genesis based on the Horndeski theory, which enables us to derive generic formulas.
- Publication:
-
Journal of Cosmology and Astroparticle Physics
- Pub Date:
- April 2016
- DOI:
- 10.1088/1475-7516/2016/04/018
- arXiv:
- arXiv:1601.06561
- Bibcode:
- 2016JCAP...04..018N
- Keywords:
-
- High Energy Physics - Theory;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- 10 pages, 4 figures