Simple set cardinality estimation through random sampling
Abstract
We present a simple algorithm that estimates the cardinality $n$ of a set $V$ when allowed to sample elements of $V$ uniformly and independently at random. Our algorithm with probability $(1-\delta)$ returns a $(1\pm\epsilon)-$approximation of $n$ drawing $O\big(\sqrt{n} \cdot \epsilon^{-1}\sqrt{\log(\delta^{-1})}\big)$ samples (for $\epsilon^{-1}\sqrt{\log(\delta^{-1})} = O(\sqrt{n})$).
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2015
- DOI:
- 10.48550/arXiv.1512.07901
- arXiv:
- arXiv:1512.07901
- Bibcode:
- 2015arXiv151207901B
- Keywords:
-
- Computer Science - Discrete Mathematics
- E-Print:
- 3 pages