On a motivic invariant of the arc-analytic equivalence
Abstract
To a Nash function germ, we associate a zeta function similar to the one introduced by J. Denef and F. Loeser. Our zeta function is a formal power series with coefficients in the Grothendieck ring $\mathcal{M}$ of $\mathcal{AS}$-sets up to $\mathbb{R}^*$-equivariant $\mathcal{AS}$-bijections over $\mathbb{R}^*$, an analog of the Grothendieck ring constructed by G. Guibert, F. Loeser and M. Merle. This zeta function generalizes the previous construction of G. Fichou but thanks to its richer structure it allows us to get a convolution formula and a Thom-Sebastiani type formula. We show that our zeta function is an invariant of the arc-analytic equivalence, a version of the blow-Nash equivalence of G. Fichou. The convolution formula allows us to obtain a partial classification of Brieskorn polynomials up to the arc-analytic equivalence by showing that the exponents are arc-analytic invariants.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2015
- DOI:
- 10.48550/arXiv.1512.07145
- arXiv:
- arXiv:1512.07145
- Bibcode:
- 2015arXiv151207145C
- Keywords:
-
- Mathematics - Algebraic Geometry;
- 14P20;
- 14E18;
- 14B05
- E-Print:
- Annales de l'institut Fourier, 67 no. 1 (2017), p. 143-196