Classically scale invariant inflation, supermassive WIMPs, and adimensional gravity
Abstract
We introduce a minimal and yet comprehensive framework with C P and classical scale symmetries in order to simultaneously address the hierarchy problem, neutrino masses, dark matter, and inflation. One complex gauge singlet scalar and three flavors of the right-handed Majorana neutrinos are added to the standard model content, facilitating the see-saw mechanism, among others. An adimensional theory of gravity (Agravity) is employed, allowing for the trans-Planckian field excursions. The weak and Planck scales are induced by the Higgs portal and the scalar nonminimal couplings, respectively, once a Coleman-Weinberg dynamically generated vacuum expectation value for the singlet scalar is obtained. All scales are free from any mutual quadratic destabilization. The C P symmetry prevents a decay of the pseudoscalar singlet, rendering it a suitable WIMPzilla dark matter candidate with the correct observational relic abundance. Identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, the model accommodates successful slow-roll inflation, compatible with the observational data. We reach the conclusion that a pseudo-Nambu-Goldstone inflaton, within a classically scale-symmetric framework, yields lighter WIMPzillas.
- Publication:
-
Physical Review D
- Pub Date:
- March 2016
- DOI:
- 10.1103/PhysRevD.93.063528
- arXiv:
- arXiv:1512.05890
- Bibcode:
- 2016PhRvD..93f3528F
- Keywords:
-
- High Energy Physics - Phenomenology;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Theory
- E-Print:
- 26 pages, 11 figures, 1 table. Published version. Title modification per journal's request