Peering into the Giant-planet-forming Region of the TW Hydrae Disk with the Gemini Planet Imager
Abstract
We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU, with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 MJ could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2015
- DOI:
- arXiv:
- arXiv:1512.01865
- Bibcode:
- 2015ApJ...815L..26R
- Keywords:
-
- circumstellar matter;
- polarization;
- stars: individual: TW Hya;
- stars: pre-main sequence;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 24 pages, 5 figures, Accepted to ApJL