The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains
Abstract
Let $\frak{n}$ be a square-free ideal of $\mathbb{F}_q[T]$. We study the rational torsion subgroup of the Jacobian variety $J_0(\frak{n})$ of the Drinfeld modular curve $X_0(\frak{n})$. We prove that for any prime number $\ell$ not dividing $q(q-1)$, the $\ell$-primary part of this group coincides with that of the cuspidal divisor class group. We further determine the structure of the $\ell$-primary part of the cuspidal divisor class group for any prime $\ell$ not dividing $q-1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2015
- DOI:
- 10.48550/arXiv.1512.00586
- arXiv:
- arXiv:1512.00586
- Bibcode:
- 2015arXiv151200586P
- Keywords:
-
- Mathematics - Number Theory;
- 11G09;
- 11G18;
- 11F12
- E-Print:
- 27 pages. arXiv admin note: text overlap with arXiv:1306.3632